ПОКАЗАТЕЛИ ДВИГАТЕЛЯ И ЕГО РАБОЧЕГО ЦИКЛА

- 1. Индикаторные показатели
- 2. Механические потери
- 3. Эффективные показатели

Ключевые слова: индикаторные показатели, индикаторное давление цикла, индикаторная работа, индикаторная мощность, индикаторный КПД, удельный индикаторный расход топлива, механические потери, среднее эффективное давление, механический КПД, эффективная мощность, эффективный КПД, эффективный удельный расход топлива.

1. Индикаторные показатели

Индикаторные показатели характеризуют действительные циклы, осуществляемые в цилиндрах ДВС. Показатели эти определяются в результате испытаний ДВС или, при проектировании новых силовых установок, расчетным путем. Основой для их определения является индикаторная диаграмма, получаемая для существующих ДВС с помощью специальных приборов, так называемых индикаторов давления, в форме зависимости изменения избыточного давления газов в цилиндре от угла поворота кривошипа $p=f(\varphi)$ или объема цилиндра p=f(V). Последняя форма наиболее удобна и поэтому повсеместно применяется для анализа и расчетов.

Из термодинамики следует, что площадь фигуры в координатах p–V (давление – объем), ограниченная кривыми процессов изменения состояния газа, составляющих цикл, эквивалентна работе цикла и для действительных циклов ДВС называется индикаторной работой цикла. При использовании диаграмм давления, полученных с помощью индикатора, не принято учитывать в индикаторной работе затраты механической энергии на осуществление газообмена в цикле. Считается, что индикаторная работа цикла соответствует площади фигуры ac'zb' (Puc. 19.1).

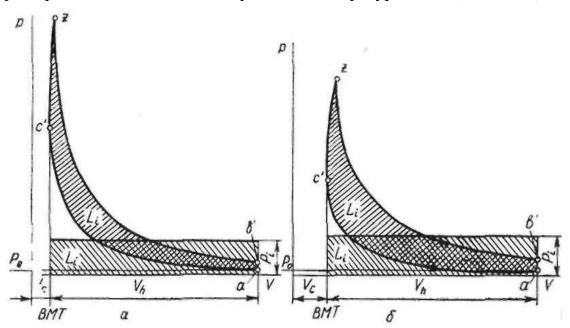


Рис. 19.1. Индикаторная работа действительного цикла в p–V-координатах: a – дизеля, δ – ДВС c искровым зажиганием

Индикаторную работу действительного цикла, получаемую с единицы рабочего объема цилиндра и имеющую размерность давления, называют средним индикаторным давлением цикла и определяют по формуле

$$p_i = \frac{L_i}{V_h}$$

При работе на полной нагрузке величина $p_i(M\Pi a)$ достигает:

для четырехтактных бензиновых двигателей 0,6...1,4 для четырехтактных бензиновых двигателей форсированных до 1,6 для четырехтактных дизелей без наддува 0,7...1,1 для четырехтактных дизелей с наддувом до 2,2

Физически — это постоянное избыточнее давление, которое, действуя на поршень, совершает за полный его ход работу, равную индикаторной работе цикла.

 $\it Индикаторную мощность ДВС$ с числом цилиндров $\it i$ можно определить из выражения

$$N_i = \frac{L_i \cdot n \cdot i}{30 \cdot \tau} = \frac{p_i \cdot V_h \cdot n \cdot i}{30 \cdot \tau}$$

Эта формула применима как к четырехтактным, так и к двухтактным ДВС. Если p_i измерять в $M\Pi a$ и V_h , как принято, в литрах, то N_i будет измеряться в κBm .

Индикаторный КПД ДВС:

$$\eta_i = \frac{N_i \cdot 3600}{G_T \cdot H_u}$$

Для современных автомобильных и тракторных двигателей, работающих на номинальном режиме величина индикаторного КПД составляет:

для двигателей с электронным впрыском топлива	0,350,45
для карбюраторных двигателей	0,300,40
для дизелей	0,400,50
для газовых двигателей	0,280,35

При сравнительной оценке экономичности ДВС, работающих на одинаковых топливах, часто используют понятие удельного индикаторного расхода топлива:

$$g_i = \frac{G_T}{N_i} \cdot 10^3$$

Удельные расходы топлива на номинальном режиме:

для двигателей с электронным впрыском

топлива $180...230 \ \emph{c/(кBm \cdot \emph{ч})}$ для карбюраторных двигателей $210...275 \ \emph{c/(кBm \cdot \emph{ч})}$ для дизелей $170...210 \ \emph{c/(кBm \cdot \emph{ч})}$ для газовых двигателей $10,5...13,5 \ \emph{MДж/(кBm \cdot \emph{ч})}$

2. Механические потери

Часть индикаторной работы, получаемой в цилиндрах, теряется в самом ДВС, расходуясь на преодоление различных сопротивлений, обеспечение внутренних потребностей, вспомогательные нужды. Эти потери энергии, называемые внутренними (или механическими), складываются из работы на преодоление сил трения в узлах и механизмах, осуществление газообмена, т.е. очистки цилиндров от отработавших газов и заполнения их свежим зарядом, привод вспомогательных механизмов (водяной,

масляный и топливный насосы, вентилятор, динамомашина, воздушный компрессор и пр.), а также на преодоление сил аэродинамического сопротивления при движении деталей ДВС в воздушно-масляной среде картера.

Дополнительным потребителем энергии может быть приводимый от вала ДВС компрессор, используемый для продувки в двухтактных или наддува в четырехтактных двигателях.

Внутренние потери в ДВС оцениваются по аналогии с индикаторными показателями, т.е. мощностью и средним давлением.

В общем случае

$$p_{\scriptscriptstyle M} = p_{\scriptscriptstyle \mathit{mp}} + p_{\scriptscriptstyle \mathit{EM}} + p_{\scriptscriptstyle \mathit{PA3}} + p_{\scriptscriptstyle \mathit{BEHM}} + p_{\scriptscriptstyle \mathit{KOMN}}.$$

Основным компонентом (70...75 % в ДВС без наддува) являются потери на трение, из которых 2/3 приходится на трение поршней и колец о стенки цилиндров. Привод вспомогательных механизмов потребляет 10...15 % энергии, осуществление газообмена — 15...20 %. Вентиляционные потери невелики и для ДВС рассматриваемой группы редко достигают 8 %. Затраты же на привод компрессора или продувочного насоса могут составить 25...30 % от всех внутренних потерь. Среднее давление внутренних потерь и доля их в развиваемой ДВС индикаторной мощности не остаются постоянными. Они меняются в зависимости от режима работы, состояния и условий эксплуатации двигателя.

Внутренние потери в ДВС составляют на режимах полных нагрузок 15...25 % от индикаторной мощности, вырабатываемой в цилиндрах. На частичных нагрузках, характерных для работы многих транспортных машин с ДВС (городская езда, работа при малой длине ездки, выполнение вспомогательных операций и т. д.), эти непроизводительные затраты энергии могут достигать 35...50 % и более, что увеличивает расход топлива, ухудшая показатели ДВС. Поэтому непроизводительные затраты должны быть сведены к минимуму.

Внутренние потери снижают различными способами:

- 1. Совершенствование конструкции ДВС (уменьшение хода поршня, увеличение диаметра цилиндра, уменьшение числа поршневых колец и т.д.).
- 2. Улучшение свойств трущихся поверхностей (повышение чистоты отделки поверхностей, улучшение их макро и микрогеометрии, подбор материалов сопряженных деталей с целью снижения коэффициента трения, применение пористой или специальной структуры поверхностного слоя, хорошо удерживающей смазку, выбор наилучшей твердости деталей и т.д.)
- 3. Оптимизация теплового состояния ДВС (тепловое состояние ДВС, устанавливаемое с помощью устройств системы охлаждения, определяет температурные условия работы деталей и слоя смазки на их трущихся поверхностях. Экспериментально установлено, что наименьшие потери на трение соответствуют температуре масла 80...90 °C).
- 4. Повышение качества масел (оптимизация вязкости, маслянистости, стабильность смазочных качеств масел во времени).
- 5. Снижение затрат энергии вспомогательными механизмами и устройствами (обычно мощность, потребляемая этими устройствами, невелика, однако снижение ее может заметно улучшить показатели ДВС при работе на малых нагрузках, когда развиваемая мощность небольшая и доля внутренних потерь значительно повышается).

6. Техническое содержание ДВС (своевременная замена элементов воздушных фильтров с учетом конкретных особенностей эксплуатации машины обеспечивает уменьшение затрат мощности как на газообмен, так и на трение; применение масел рекомендованной заводом вязкости и марки, смена их в установленные сроки, соблюдение предусмотренных сроков замены элементов масляных фильтров, обеспечение соответствующего заводской документации теплового состояния ДВС при работе).

3. Эффективные показатели

Показатели ДВС, получаемые на выходном конце коленчатого вала, называются эффективными.

Среднее эффективное давление p_e представляет собой отношение эффективной работы на валу двигателя к единице рабочего объема цилиндра. В расчетах двигателей p_e определяется по среднему индикаторному давлению

$$p_e = p_i - p_M$$

Для двигателей с механическим наддувом

$$p_e = p_i - p_{\scriptscriptstyle M} - p_{\scriptscriptstyle H}$$

где $p_{\scriptscriptstyle H}$ – потери давления на привод нагнетателя.

Значения среднего эффективного давления p_e (*МПа*) при номинальной нагрузке изменяются в следующих пределах:

для четырехтактных карбюраторных двигателей	0,61,1
для четырехтактных карбюраторных двигателей	
форсированных и двигателей с электронным впрыском	до 1,3
для четырехтактных дизелей без наддува	0,650,85
для четырехтактных дизелей с наддувом	до 2,0
для двухтактных быстроходных дизелей	0,40,75
для газовых двигателей	0,50,75

С ростом среднего эффективного давления улучшаются условия использования рабочего объема цилиндра, что дает возможность создавать более легкие и компактные двигатели.

Длительное время при создании автомобильных и тракторных двигателей отмечалась тенденция к постоянному увеличению p_e .

Однако нефтяной кризис 70...80-х годов серьезно затормозил эту тенденцию. Рост p_e сдерживали и постоянно растущие требования во всем мире по уменьшению токсичности двигателей в процессе их эксплуатации. Сегодня тенденция роста p_e возобновилась при резком уменьшении токсичности за счет лучшей организации рабочего процесса, применения высокосортных топлив, совершенствования систем питания и использования наддува.

Отношение среднего эффективного давления к индикаторному называется механическим КПД двигателя:

$$\eta_{\scriptscriptstyle M} = \frac{p_e}{p_i} \qquad \eta_{\scriptscriptstyle M} = 1 - \frac{p_{\scriptscriptstyle M}}{p_i}$$

С увеличением потерь в двигателе $\eta_{\scriptscriptstyle M}$ уменьшается. При снижении нагрузки в карбюраторном двигателе значительно возрастает $p_{\scriptscriptstyle M}$ из-за увеличения потерь на газообмен. При холостом ходе $p_i = p_{\scriptscriptstyle M}$ и $\eta_{\scriptscriptstyle M} = 0$.

Величина механического КПД возрастает с уменьшением потерь на трение и на механизмов, а также с увеличением привод вспомогательных нагрузки определенных пределов.

По опытным данным механический КПД различных двигателей, работающих на номинальном режиме, изменяется в следующих пределах:

для бензиновых. двигателей	0,750,92
для четырехтактных дизелей без наддува	0,700,82
для четырехтактных дизелей с наддувом (без учета	
потерь мощности на нагнетатель)	0,800,90
для двухтактных быстроходных дизелей	0,700,85
для газовых двигателей	0,750,85

Полезная работа, получаемая на валу двигателя в единицу времени, называется эффективной мощностью N_e . Величина N_e (кВт) может быть определена по индикаторной мощности через механический КПД:

$$N_e = N_i \cdot \eta_{\scriptscriptstyle M} = \frac{p_e \cdot V_h \cdot i \cdot n}{30 \cdot \tau}$$

 $N_e=N_i\cdot\eta_{_M}=\frac{p_e\cdot V_h\cdot i\cdot n}{30\cdot \tau}$ где p_e – выражено в *МПа*; V_h – в π ; n – в $mu\mu^{-1}$.

Связь между эффективной мощностью и основными параметрами двигателя выражается следующей зависимостью:

$$N_e = \frac{V_h \cdot i \cdot n}{30 \cdot \tau} \cdot \frac{H_u}{\alpha \cdot l_0} \cdot \rho_k \cdot \eta_V \cdot \eta_i \cdot \eta_M$$

где V_h – выражено в π ; n – в Muh^{-1} ; H_u – MДжс/кг; ρ_k – кг/ M^3 .

Из анализа данного выражения следует, что эффективная мощность двигателя может быть повышена в общем случае за счет:

- увеличения рабочего объема цилиндра (увеличения линейных размеров диаметра цилиндра и хода поршня);
- увеличения числа цилиндров;
- увеличения частоты вращения коленчатого вала двигателя;
- перехода с четырехтактного на двухтактный цикл;
- повышения низшей теплоты сгорания топлива;
- повышения плотности заряда и коэффициента наполнения (например, путем наддува, а также за счет улучшения организации газообмена, снижения сопротивлений на впуске и выпуске, применения инерционного наддува для увеличения дозарядки и т.д.);
- повышения индикаторного КПД (за счет совершенствования процесса сгорания и сокращения потерь теплоты топлива в процессах сжатия и расширения);
- повышения механического КПД двигателя (например, за счет использования уменьшения соприкасающихся поверхностей, высококачественных масел, сокращения насосных потерь и т.д.).

Эффективный $K\Pi \Pi$ η_e и эффективный удельный расход топлива характеризуют экономичность работы двигателя.

Отношение количества теплоты, эквивалентной полезной работе на валу двигателя, к общему количеству теплоты, внесенной в двигатель с топливом, называется эффективным КПД:

$$\eta_e = \frac{L_e}{H_u}$$

 H_u – низшая теплота сгорания топлива, $M \not\square \mathscr{H} / \kappa \mathcal{E}$ топлива,

Связь между эффективным и механическим КПД двигателя определяется выражением:

$$\eta_e = \eta_i \cdot \eta_{M}$$

Эффективный КПД двигателя характеризует степень использования теплоты топлива в двигателе с учетом всех потерь – тепловых и механических.

Значения эффективного КПД при номинальном режиме приведены ниже:

для бензиновых двигателей	0,250,38
для дизелей без наддува	0,350,42
для дизелей с наддувом	0,230,30
для газовых двигателей	0,380,45

Более высокие значения эффективного КПД у дизелей по сравнению бензиновыми двигателями являются в основном следствием повышенных значений у них коэффициентов избытка воздуха, а, следовательно, и более полного сгорания топлива, Этого недостатка практически нет у двигателей с впрыском легкого топлива.

Эффективный удельный расход [$z/(\kappa Bm \cdot u)$] жидкого топлива:

$$g_e = \frac{3600}{H_u \cdot \eta_e}$$

Для современных автомобильных и тракторных двигателей эффективный удельный расход топлива при номинальной нагрузке имеет следующие значения:

для карбюраторных двигателей	230310 ε/(κBm·ч)
для двигателей с электронным впрыском топлива	200290 г/(κBm⋅ч)
для дизелей с неразделенными камерами	200235 г/(κBm·ч)
для вихрекамерных и предкамерных дизелей	220260 г/(κBm⋅ч)
для газовых двигателей	1217 МДж/(кВт∙ч)

Контрольные вопросы:

- 1. Индикаторное давление цикла и его значения для различных ДВС
- 2. Индикаторная мощность и ее значения для различных ДВС
- 3. Индикаторный КПД и его значения для различных ДВС
- 4. Механические потери
- 5. Различные способы снижения внутренних потерь
- 6. Среднее эффективное давление и его значения для различных ДВС
- 7. Механический КПД и его значения для различных ДВС
- 8. Эффективная мощность и ее значения для различных ДВС
- 9. Общие способы повышения эффективной мощности двигателя
- 10. Эффективный КПД и его значения для различных ДВС
- 11. Эффективный удельный расход топлива и его значения для различных ДВС